Spine-related pain and disability are some of the greatest preoccupations of clinicians and patients. Beyond 'normal' aging of the elements of the spine, absolute degeneration of these spinal substructures eventually occurs. This at some point entails a superoinferior narrowing and eventual collapse of the intervertebral disk. Preceding or accompanying these diskal alterations, significant degenerative changes also occur in the nondiskal structures of the spinal column and related tissues, including the posterior spinal facet joints, the spinal ligaments, the underlying bone of the posterior bony elements of the spine and the perispinal muscles. This article outlines the clinically relevant spinal and perispinal consequences of and phenomena contributing to acquired degenerative
changes of the nondiskal structures of the intervertebral segments at and immediately suprajacent to the lumbosacral junction (i.e., L5-S1, L4-5, and L3-4 levels) and illustrates how these pathoanatomic findings relate to the normal and variant anatomy and dysfunction of this region of the spine.

NORMAL AND VARIANT ANATOMY OF THE LUMBOSACRAL SPINE

The nondiskal structures of the spine that may undergo degenerative changes include the posterior spinal facet (e.g., zygapophyseal) joints; the spinous processes; the intraspinal ligaments; the spinal nerves and spinal innervation; and the perispinal (intraspinal) muscles (Figs. 1 - 4). Normal gross anatomic variations in these structures include those of lumbosacral spinal curvature (e.g., straight spine: hypolordosis; exaggerated spinal curvature: hyperlordosis [Fig. 5]; and lateral and rotational scoliosis); central spinal canal diameter (e.g., developmental spinal stenosis); vertebral morphology (e.g., normal anterior wedge shape of L2-L5 vertebral bodies); diskal morphology (e.g., normal anterior wedge shape of L2-3 through L5-S1 intervertebral disks); spinous process morphology (e.g., normal hypoplasia of L5 spinous process); and facet joint angulation in the axial plane (e.g., sagittal or coronal orientation; facet joint tropism or lateral asymmetry of angulation). These variations may predispose or accelerate degenerative changes in predictable ways. In turn, these degenerative alterations may in some cases result in signs and symptoms including low back pain and lower-extremity referred pain, both of which may respond to therapies specific to the underlying problem. The anatomic foundation for these signs and symptoms is clear and is found within the innervation of these spinal and perispinal structures and in the central nervous system pathways serving the peripheral nervous system.\[9\] [20]
ligament originating in ligamenta flava on each side and terminating in inferior margin of the suprajacent spinous process; 26. Middle segment of interspinous ligament originating in superior margin of subjacent spinous process and terminating in suprajacent spinal process; 27. Posterior (dorsal) segment of interspinous segment originating in the superior margin of the subjacent spinous process and terminating in the supraspinous ligament (at levels where it exists) or the erector spine muscle tendons (below the level of the supraspinous ligament); 28. Transverse recesses; 29. Intertransverse ligaments and intertransversarii muscles; 30. Annulus fibrosus of the intervertebral disk(s). Note the posterocranial orientation of the fibers of the interspinous ligament (B-D).

Figure 3. Axial view of the perispinal muscles in the lumbar region on the left. 1. Lumbar vertebra; 2. Psoas muscle; 3. Intertransversarius muscle; 4. Quadratus lumborum muscle; 5. Thoracocostalis muscle; 6. Longissimus muscle; 7. Multifidus muscle; 8. Interspinalis muscle; 9. External oblique muscle; 10. Internal oblique muscle; 11. Latissimus dorsi muscle.

Figure 4. Innervation of structures of dorsal (posterior) aspect of spinal column. 1. Main trunk of spinal nerve; 2. Ventral ramus of spinal nerve; 3. Lateral branch of dorsal ramus of spinal nerve; 4. Neural fibers to posterior dorsal ramus of spinal nerve; 5. Dorsal ramus of spinal nerve; 6. Dorsal nerve root and ganglion; 7. Ventral nerve root; 8. Gray ramus communicans; 9. White ramus communicans; 10. Intervertebral disk; 11. Articular cartilage of posterior spinal facet (i.e., zygapophyseal) joint; 12. Neural fibers from main trunk of spinal nerve; 13. Neural fibers to posterior facet joint from ventral ramus of

Figure 5. Variant anatomy of the lumbosacral spine. *A*, Straight or hypolordotic spine. The spinal lordotic curvature in this example overall is minimal, or absent in extreme cases, in part because the lower lumbar vertebrae and intervertebral disks are less than normally wedge-shaped (i.e., rectangular shape in this example). Note the mildly hyperplastic L5 spinous process (*asterisk*). *B*, Hyperlordotic (i.e., swayback) spine. The spinal lordotic curvature in this example is exaggerated and the sacrum tends to be more horizontal than normal. Note the hypoplastic L5 spinous process (*asterisk*) and the exaggerated wedge shape of the vertebral bodies and intervertebral disks. Compare with **Figure 1 A**. Also note the somewhat
vertically angled sacrum.

PATHOLOGIC ANATOMY OF THE LUMBOSACRAL SPINE RELATED TO OR ACCOMPANYING COLLAPSE OF THE INTERVERTEBRAL DISK

Vertebral End Plate Approximation with Disk Space Narrowing

Posterior Bulging of Redundant Posterior Disk Surface with Narrowing of the Central Spinal Canal and Inferior Recesses of the Neural Foramina.

With superoinferior collapse of the intervertebral disk, the peripheral annulus fibrosus becomes redundant and bulges outward. Accompanying posterior bulging of the redundant posterior aspect of the disk surface of the annulus fibrosus is regional narrowing of the inferior recesses of the neural foramina (Fig. 6A).
Figure 6. Alterations in the posterior spinal facet (i.e., zygapophyseal) joints related to intervertebral disk collapse. A, Posterior or spinal facet joint subluxation associated with early intervertebral disk collapse. Note the mild L4-L5 intervertebral disk space narrowing (solid arrow), the superoinferior narrowing of the spinal neural foramen (open arrows), the superoinferior subluxation of the posterior spinal facet joint (dashed arrows), and the early collision and sclerosis of the apex of the superior articular process of L5 and the overlying pars interarticularis of L4 (circled area). This will result in many or all cases in posterior spinal facet joint(s) gapping (asterisk) and effusion (coarse stippling) at some time during this pathologic process. B, Collision and blunt erosion of the apices of the superior and inferior articular processes of the posterior spinal facet (i.e., zygapophyseal) joints and related bony spinal structures. With further narrowing of the intervertebral disk (asterisk), there may be blunting of the apex of the superior articular process and
associated erosion of the anteroinferior aspect of the anteroinferior aspect of the overlying upper pars interarticularis of the suprajacent vertebra (*solid arrow with shading*). Note the early narrowing/erosion of the posterior spinal facet joint articular cartilage. *C*, Curved remodeling of superior articular facet process and neoarthrosis formation between the apex of the superior articular facet process and the suprajacent pars interarticularis. The superior articular process may eventually undergo a curved remodeling (*asterisk*), partially associated with osteophytic overgrowth. At the same time, a neoarthrosis (*curved arrow*) may form between the remodeled superior facet process and the overlying bone of the undersurface of the suprajacent pedicle and pars interarticularis. Concomitantly a neoarthrosis (*open arrow*) may form between the apex of the inferior facet process (*dot*) and the posterior surface of the subjacent pars interarticularis.

Anterior and posterior spinal facet joint articular cartilage has been eroded (*solid arrowhead*). *D*, Neocyst formation off of the neoarthrosis between the superior articular facet process and the superficjacent pedicle-pars interarticularis. A neocyst (*arrow: coarse stippling*) that may communicate with the adjacent posterior spinal facet joint may form off of the neoarthrosis between the superior articular facet process and the inferior surface of the suprajacent pedicle pars interarticularis. This neocyst may extend into the spinal neural foramen and central spinal canal, thereby narrowing these areas, and into the lateral/posterior perispinal soft tissues. Pathologically this cyst typically has a thick wall and a small central cavity. Histologically this cyst may not be lined by synovial tissue in which case it is a neocyst or pseudocyst, or may be lined by synovial tissue, thereby representing a true synovial cyst. *E*, Neocyst formation off of the apex of the inferior articular facet process and the subjacent pars interarticularis. A neocyst (*arrow: coarse stippling*) that may communicate with the adjacent posterior spinal facet joint may form off of the neoarthrosis between the apex of the inferior articular facet process and the posterior surface of the subjacent pars interarticularis. This neocyst will extend into the perispinous soft tissues. The neocyst characteristically has a thick wall and small cavity. As noted above, this cyst may be a neocyst or a true synovial cyst, a histologic distinction. *F*, Erosive pars interarticularis thinning: With collapse of the adjacent intervertebral disks at and suprajacent to the lumbosacral junction (*open arrows*), erosion of the intervening pars interarticularis (*solid arrow*) may occur anteriorly and posteriorly: the suprajacent inferior articular facet process (*dot*) erodes posteriorly and the subjacent superior articular facet process (*asterisk*) erodes anteriorly. This thins and structurally weakens the pars interarticularis. A neocyst (*arrow: coarse stippling*) that may communicate with the adjacent anterior spinal facet joint may form off of the neoarthrosis between the apex of the inferior articular facet process and the posterior surface of the subjacent pars interarticularis. This neocyst will extend into the perispinous soft tissues. The neocyst characteristically has a thick wall and small cavity. As noted above, this cyst may be a neocyst or a true synovial cyst, a histologic distinction. *G*, Degenerative insufficiency fracture of the pars interarticularis. With further erosion and continued stresses, an insufficiency fracture of the pars interarticularis may occur (*dashed circle*). This may then allow unrestricted degrees of acquired anterolisthesis to result (*dashed arrow*). *H*, Collisional articular facet process fracture. With continued stresses placed upon the remodeled and osteophytically overgrown posterior spinal articular facet processes, the superior (*asterisk*) or inferior (*dot*) articular facet process or attached brittle osteophytes may fracture (*solid arrows: 1, 2*). This may yet further narrow the spinal neural foramen at this level (*open arrows*). *I*, Articular process fracture fragment distraction/displacement. With continued somatic movements, the superior (*asterisk*) and inferior (*dot*) articular fracture fragments may go to nonunion and become distracted or displaced (*curved arrows*). The former further narrows the involved spinal neural foramen. The loss of this buttressing effect then allows further degenerative narrowing or absolute collapse of the intervertebral disk (*open arrows*), and consequently further narrowing (i.e., stenosis) of the spinal neural foramen at this level.

Anterior Bulging of Redundant Ligamenta Flava and Posterior Spinal Facet (i.e., Zygapophyseal) Joint Capsule, with Narrowing of the Central Spinal Canal and the Lateral Recesses of the Central Spinal Canal.

When the intervertebral disk undergoes a reduction in height, there is a consonant redundancy in the ligamenta flava and posterior spinal facet joint capsule that protrudes anteriorly into the central spinal and lateral recesses of the central spinal canal and spinal neural foramen, resulting in further narrowing of these regions (Fig. 6B). [14]

Posterior Bulging of a Redundant Posterior Longitudinal Ligament with Narrowing of the Central Spinal Canal.
With collapse of the intervertebral disk there is a consonant focal redundancy of the posterior longitudinal ligament that protrudes posteriorly into the central spinal canal, resulting in further anteroposterior narrowing of this region.

Posterior Paradiskal Vertebral Arthrosis and Osteophytosis with Anteroposterior Narrowing of the Central Spinal Canal, Lateral Recesses of the Central Spinal Canal, and Neural Foramina.

With narrowing of the intervertebral disk, the periphery of the adjacent vertebral bodies typically develops rim osteophytes that extend into the central spinal canal itself, the lateral recesses of the central spinal canal, and the neural foramina. This results in further anteroposterior narrowing of these regions (Fig. 6C).

Radial Expansion Vertebral Remodeling with Narrowing of the Central Spinal Canal, the Lateral Recesses of the Central Spinal Canal, and the Spinal Neural Foramina.

Accompanying degenerative narrowing of suprajacent and subjacent intervertebral disks, the intervening vertebral body may undergo stress-related remodeling. This remodeling consists of a radial enlargement of the vertebral body in the horizontal plane and a height reduction, causing a type of pancaking of the corpus. This results in anteroposterior narrowing of the central spinal canal, the lateral recesses of the central spinal canal, and the spinal neural foramina (Fig. 7).
Figure 7. Radial expansion remodeling of vertebral body. A, Radial expansion remodeling of the vertebral body between suprajacent and subjacent intervertebral disk collapse associated with central spinal canal stenosis. The vertebral body between two adjacent collapsed intervertebral disks (open, single-headed arrows) may undergo radial expansion remodeling circumferentially in the horizontal plane (open, double-headed arrow). At the same time, there will be a superoinferior narrowing of the vertebral body (open, dashed double-headed arrow) producing a bony flat remodeling, or pancaking of the vertebra. This results in anteroposterior narrowing of the central spinal canal (solid double-headed arrow) and its lateral recesses.

B, Radial expansion remodeling of the vertebral body associated with spinal neural foramen stenosis. The radially expanded vertebral body (open, double-headed arrow) between two collapsed intervertebral disks (open, single-headed arrows) results in anteroposterior narrowing of the spinal neural foramen (solid arrow) at this level. This stenosis alteration may be asymmetric, side to side.

Pedicle-Pedicular Approximation with Superoinferior Narrowing of the Spinal Neural Foramina

With a loss of height in the intervertebral disk there is a consonant narrowing of the superoinferior dimension of the spinal neural foramina (see Fig. 6A). [31] [38] [47]

Posterior Spinal Facet Joint Degenerative Craniocaudal Partial Subluxation
With collapse of the intervertebral disk, there is a consonant craniocaudal partial subluxation of the posterior spinal facet joints. This facet subluxation and the subsequent alterations may be asymmetric from side to side.

Posterior Spinal Facet Joint Arthrosis and Osteophytosis with Narrowing of the Lateral Recesses of the Central Spinal Canal and the Spinal Neural Foramina.

When the posterior spinal facet joint undergoes subluxation secondary to intervertebral disk narrowing, new stresses on the facet joint result in arthrosis and osteophytosis. This causes further anteroposterior narrowing of the lateral recesses of the central spinal canal and the spinal neural foramina. Posterior spinal facet joint effusions may accompany these alterations at some point during the disease process (see Figs. 6 A and C).

Superior Articular Facet Process and Pars Interarticularis Collision.

When the intervertebral disk collapses, the resulting posterior facet joint craniocaudal partial subluxation causes a collision of the apex of the superior articular facet process and the undersurface of the pars interarticularis (see Fig. 6B).

Superoinferior Articular Facet Process and Pars Interarticularis Collisional Osteophytosis with Further Narrowing of the Superior Recess of the Spinal Neural Foramen.

Collision of the superior articular facet process with the overlying pars interarticularis results in collisional osteophytosis with further narrowing of the superior recess of the spinal neural foramen (see Fig. 6 B).

Collisional Blunt Erosion of the Apex of the Superior Articular Facet Process with Superoinferior Narrowing of the Spinal Neural Foramen. Collisional Excavative Erosion of the Undersurface of the Pars Interarticularis with Further Craniocaudal Narrowing of the Spinal Neural Foramen.

At the same time that there is erosion of the apex of the colliding superior articular facet process, there is a similar excavative erosion of the undersurface of the pars interarticularis. This results in yet further superoinferior narrowing of the spinal neural foramen (see Fig. 6 B).

Collisional Anterior Curved Remodeling of the Superior Articular Facet Process with Further Narrowing of the Superior Recess of the Spinal Neural Foramen.

With progression of the superior articular facet process, collision with the overlying progression of the superior articular facet process, and collision with the overlying pars interarticularis and pedicle, an anterior curved osteophytic remodeling of the superior articular facet process occurs (see Fig. 6 C). This results in further encroachment on the superior recess of the spinal neural foramen.

Superior or Inferior Articular Facet Process of Collisional Fracture with Fracture Fragment Displacement and Further Encroachment on the Spinal Neural Foramen.
This osteophytic fracture dislocation also allows further narrowing of the intervertebral disk space (Figs. 6 H and I).

As the superior articular facet process continues to erode the overlying pedicular bone, a neoarthrosis may develop between the two. This neoarthrosis may communicate with the adjacent articular space of the posterior spinal facet joint (Fig. 6 D).

Subsequently, a neocyst (i.e., not synovium lined) may form and similarly communicate with the posterior spinal facet joint (see Fig. 6D). If the neocyst extends into the central spinal canal and neural foramen, there is consonant encroachment on these areas. In the past, reported cases of ganglion and ligamentum flavum cysts were probably representative of this entity.[1] [8] [12] [53] [64] [72] [83] [84] [128] [134]

Posterior Spinal Facet Joint True Synovial Cyst Formation (Intraspinal or Perispinal) with Encroachment on the Central Spinal Canal, the Lateral Recesses of the Central Spinal Canal, and the Spinal Neural Foramen.

True synovium-lined cysts may also develop off of the posterior spinal facet joints. These encroach on the central spinal canal, the lateral recesses of the central spinal canal, and the spinal neural foramen in cases of cyst extension into these areas.[30] [59] [66] [76] [77] [90] [112] [137]

Inferior Articular Facet Process and Pars Interarticularis Collision Posteriorly at the Lumbosacral Lordosis.

When the intervertebral disk narrows, the apex of the inferior articular facet process collides with the posterior aspect of the pars interarticularis of the subjacent vertebra.[56] [57] [78] [80] [106] This type of collision only occurs at the lumbosacral lordosis.

Posteroinferior Collisional Osteophytosis.

With a collision of the apex of the inferior articular facet process and the underlying pars interarticularis, a collisional osteophytosis results (see Fig. 6 B).

With progressive intervertebral disk narrowing, collisional blunt erosion of the apex of the inferior articular facet process occurs. This may allow further superoinferior narrowing of the neural foramen (see Fig. 6 B).

Collisional Excavative Erosion of the Posterior Surface of the Pars Interarticularis.
At the same time that erosion of the apex of the colliding inferior articular facet process is taking place, there is a similar excavative erosion of the posterior surface of the pars interarticularis (see Fig. 6 B).

Inferior Articular Facet Process and Pars Interarticularis Communicating Neocyst Formation.

Subsequently, a neocyst (i.e., not synovium lined) may develop off of the neoarthrosis. This neocyst may also communicate with the articular space of the posterior spinal facet joint (Fig. 6 E). If the cyst is lined with synovium, this could constitute a true synovial cyst at this location. This differentiation between communicating neocyst and true synovial cyst in all cases is a histologic one.

Interspinous Ligament Sprain with or without Ligamentous Rupture, Interspinous Neoarthrosis and Neocyst Formation, and Secondary Paraspinal Muscle Degeneration

Increased intervertebral stresses may induce an interspinous ligament sprain. This may include tears (ruptures) of the fibers of the interspinous ligament. With a progressive loss of intervertebral disk height, there is a consonant loss of the interspinous space and further increased axial stresses on the interspinous and supraspinous ligaments.

Interspinous Ligament Redundancy and Sprain with Hyperplasia and Eventual Collisional Osteophytosis and Neoarthrosis.

With a near or true collision of the vertebral spinous processes (i.e., Baastrup's phenomenon) there is an interspinous ligament redundancy of the opposing spinous process, osteophytosis, and eventual neoarthrosis formation. The redundancy and hyperplasia of the interspinous ligament may extend into the posterior aspect of the central spinal canal in the midline resulting in replacement of the retrothecal fat pad and narrowing of the central spinal canal. Acute, subacute, and chronic autotrauma to the interspinous ligament may result in minor intrinsic sprain or frank rupture-avulsion of the interspinous ligament (Fig. 8 A). These alterations accompany consonant intervertebral disk disease in most cases (75%); however, in the remainder interspinous ligament disease may occur before and be more severe than some isosegment disk disease.

[26] [49] [50] [62] [80] [113] [114] [115] [118]
Figure 8. Degenerative alterations in the interspinous ligaments and interspinous space. A, Interspinous ligament sprain with or without intervertebral disk degeneration and associated spinal instability with segmental motion-related stresses. Acute, subacute and chronic motion-related stresses may lead to a type of degenerative ligamentous sprain (i.e., edema, ligamentous fiber tears, frank rupture/avulsion) of the interspinous ligament (*asterisks/shading*). Interspinous ligament redundancy will bulge posteriorly and anteriorly; the latter will replace/displace varying degrees of the segmental retrothecal fat pad(s) (*open arrow*). These interspinous ligament sprains may be hyperintense on T1- and T2-weighted imaging sequences, presumably as a result of high protein content. Ligamentous degenerative change may occur before, simultaneously with, or following intervertebral disk degeneration (*asterisk*). B, Spinal process collision associated with progressive interspinous degenerative alteration (i.e., Baastrup's phenomenon). With progressive intervertebral disk collapse (*open arrows*), there may be a bony collision of the spinous processes of the adjacent vertebrae (*solid curved arrows*) at and suprajacent to the lumbosacral junction. Interspinous ligament redundancy (*solid straight arrows*) together with bulging of the posterior aspect of the intervertebral disk (*arrowhead*) into the central spinal canal will produce some degree of central spinal canal stenosis. Note that the redundant supraspinous ligament (*dashed arrow*) will bulge into the perispinous soft tissues (*dashed curved arrow*). C, Interspinous neoarthrosis associated with intervertebral disk collapse; associated stress-related marrow alterations within the spinous process marrow and vertebral bodies. With further collapse of the intervertebral disk and increased segmental instability/motion, a neoarthroses (i.e., pseudoarthrosis) may develop between the spinous processes of adjacent vertebral levels (*open arrow*). The thickened interspinous ligament will protrude peripherally/radially in the axial plane (*solid arrows*). These phenomena will be predisposed to in individuals with spinous processes that are larger in the superoinferior dimension and in individuals with marked lumbosacral lordosis (i.e., hyperlordosis: "sway back"). Spinous process and vertebral body marrow edema (coarse stippling: Type I marrow alteration), fatty marrow infiltration (gray shading: Type II marrow alteration) and/or bony sclerosis (black shading: Type III marrow alteration) may result from these ongoing intervertebral interspinous stresses. D, Neocyst (i.e., pseudocyst) formation extending from an interspinous neoarthrosis. Continued stresses exerted upon the interspinous ligament and adjacent spinous processes may eventually
result in neocyst formation extending off of the interspinous neoarthrosis. These neocysts may be multiple and may extend posteriorly (open arrow), laterally (dashed circle), or anteriorly (solid arrow). The latter may significantly contribute to stenosis of the central spinal canal.

Interspinous Neoarthrosis and Neocyst Formation with Anteroposterior Narrowing of the Central Spinal Canal in Cases of Neocyst Extension into the Central Spinal Canal.

When a neoarthrosis develops between two colliding spinous processes, a communicating neocyst (i.e., pseudocyst) may evolve (Figs. 8 B to D). This neocyst formation may extend in any radial direction in the axial plane. Extension of the neocyst into the central spinal canal results in additional replacement of the retrothecal fat pad and further narrowing (i.e., stenosis) of the central spinal canal.

Supraspinous Ligament Redundancy

With degenerative approximation of the spinous process, the intervening supraspinous ligament becomes redundant and bulges into the posterior perispinous soft tissues (see Fig. 8 B).

Segmental Degenerative Intervertebral Instability

Concomitant with collapse of the intervertebral disk, the spine may undergo segmental intervertebral degenerative instability. Depending on the individual case, the suprajacent vertebral body may slip backward (i.e., retrolisthesis), forward (i.e., anterolisthesis), lateral (i.e., laterolisthesis), or rotationally (i.e., rotolisthesis) with relation to the subjacent one.

Degenerative Spinal Retrolisthesis.

Anterior and Superior Displacement of the Superior Articular Facet Process with Narrowing of the Anteroposterior and Superoinferior Dimensions of the Spinal Neural Foramen. In degenerative retrolisthesis, the superior articular facet process is displaced anteriorly. With associated narrowing of the intervertebral disk the superior articular facet process is displaced superiorly. This results in anteroposterior and superoinferior narrowing of the spinal neural foramen. The apex of the superior articular facet process in some instances may be displaced directly into the superior recess of the spinal neural foramen (Fig. 9 B). Eventually, erosive alterations occur to the colliding bony elements (Fig. 9 C).
Figure 9. Degenerative retrolisthesis associated with intervertebral disk collapse and degeneration of related spinal structures. A, Degenerative retrolisthesis with central spinal canal stenosis. With intervertebral disk collapse and degeneration of related spinal structures (e.g., intraspinal ligaments, degenerative retrolisthesis may occur (dashed arrows). This results in stenosis of the central spinal canal (double-headed arrow). B, Anteroposterior posterior spinal facet (i.e., zygapophyseal) joint dislocation. With the retrolisthesis of the suprajacent vertebral body (dashed arrow), there will be an anteroposterior posterior spinal facet joint dislocation (asterisk) associated with a joint effusion (coarse stippling). This will narrow the anteroposterior diameter of the spinal neural foramen (solid arrow). In addition, the apex of the superior articular facet process (dot) may protrude directly into the superior recess of the spinal neural foramen. C, Erosion of the apex of the superior articular facet process and pedicle. With further disk collapse there maybe an excavative erosion of the apex of the superior articular facet process and suprajacent pedicle (shading).

Degenerative Spinal Anterolisthesis.
Anteroposterior Narrowing of the Central Spinal Canal. With anterolisthesis of the suprajacent vertebral body on the subjacent one, anteroposterior narrowing of the central spinal canal occurs (Fig. 10 A).
Figure 10. Degenerative anterolisthesis related to intervertebral disk collapse and degeneration of related spinal structure.

A. Degenerative anterolisthesis. With collapse of the intervertebral disk and degeneration of related spinal structure (e.g., intraspinal ligaments), degenerative anterolisthesis (dashed arrows) of the suprajacent vertebral body may occur. This results in stenosis of the central spinal canal (double-headed arrow) (dashed lines: levels of sections in Figs. 10E, iii, and 10F).

B. Angular remodeling of the articular facet processes and Type I stress-related marrow alteration. In order for degenerative anterolisthesis (dashed arrow) to occur, segmental anterior angular remodeling (i.e., bending) of the superior articular facet process (open arrows) of the subjacent vertebra and posterior angular remodeling of the inferior articular facet process (solid arrows) of the suprajacent vertebra must occur. Degenerative narrowing of the posterior articular facet joint space also takes place, initially occurring as a result of articular cartilage loss. During the active-progressive phase of this process, marrow edema (coarse stippling: Type I marrow alteration) may be present within the affected segmental posterior articular facet processes, pars interarticularis (i) and connected pedicle(s). Radial anterior; posterior and lateral (not shown) paradiskal osteophytes (shaded areas) may be present. Note the narrowing of the inferior recess (asterisk) of the spinal neural foramen that results from anterior angular remodeling of the superior articular process.

C. Type II stress-related posterior articular process/pars interarticularis pedicle marrow alterations. With continued anterior translational (i.e., shear: dashed arrow) stresses on the spine, fatty marrow infiltration (gray shading: Type II marrow alteration) may result. Note the erosive changes of the respective posterior spinal facet joint articular processes.

D. Type III stress-related posterior articular process/pars interarticularis/pedicle marrow alteration. Bony sclerosis (black shading: Type III marrow alteration) of the pars interarticularis (i)articular facet process(es) and pedicle(s) of the involved vertebrae may eventually result.

E. Sagittal with primary orientation (i.e., developmental), or secondary stress-related degenerative
remodeling reorientation (i.e., acquired), of the posterior spinal facet (i.e., zygapophyseal) joint in the axial plane, consequent degenerative anterolisthesis. i. Normal posterior spinal facet joint angulation in the axial (transverse) plane. ii. Increased sagittal plane orientation of the posterior spinal facet joint angulation in the axial plane. This sagittal plane orientation may be primary (i.e., developmental sagittal orientation) or acquired (i.e., degenerative remodeling). iii. Axial plane relationship of anterolisthetic suprajacent vertebra and its superior articular facet process (solid arrows) compared with the subjacent vertebral body (star) and its inferior articular facet processes (asterisks) in cases of sagittal facet joint angle orientation. Sagittal primary orientation of acquired reorientation of the posterior spinal facet joints in the axial plane results in anterolisthesis. This in turn causes stenosis of the central spinal canal (double-headed arrow), and simultaneous narrowing of the inferior recesses of the spinal neural foramina and lateral recesses of the central spinal canal (curved arrows). 1. Coronal plane of vertebral body; 2. Posterior spinal facet (i.e., zygapophyseal) joint angle on the right side in the axial plane; 3. Posterior spinal facet joint angle on the left side in the axial plane; 4. Posterior spinal facet joint angulation on the left side with reference to the coronal plane of the spine; 5. Posterior spinal facet joint angulation on the right side with reference to the coronal plane of the spine; 6. Superior articular process of subjacent vertebra; 7. Inferior articular process and contiguous pars interarticularis of suprajacent vertebra; 8. Spinous process; 9. Lamina; 10. Vertebral body; 11. Bilateral sagittal orientation of the posterior spinal facet joint angles; 12. Relative enlargement of posterior spinal facet joint angles. Compare with E_1; 13. Bilateral coronal orientation of the posterior spinal facet joint angles; 14. Relative narrowing of posterior spinal facet joint angles. Compare with E_1 and E_{ii}. F, Axial plane relationship of suprajacent anterolisthetic vertebral body and its inferior articular facet processes (open arrows) to subjacent superior articular processes in example of coronally oriented facet joint angulation in the axial plane. In the absence of a primary or acquired sagittal orientation of the posterior spinal facet joint angulations, the shear forces obtained at this level of the spine may still result in anterior angular remodeling of the superior articular processes (solid arrows) of the subjacent vertebra (not shown) and consequent stenosis of the inferior recess of the spinal neural foramina (see Fig. 10 B) and the lateral recesses of the central spinal canal (curved arrows). G, Segmental sagittal plane tropism (i.e., asymmetry of the posterior spinal facet (i.e., zygapophyseal) joints with consequent degenerative rotolisthesis (i.e., segmental rotoscoliosis). i. Tropism or posterior spinal facet joint asymmetry not infrequently is present before the onset of degenerative disease. Note the more sagittal orientation of the facet joint in this example on the right side, with reference to the axial plane. (Curved, dotted arrow: rotational stresses obtaining in right-foot dominant individual. Note the forces terminate at right angles to the posterior spinal facet joint angulation in the axial plane. Prior to segmental spinal degeneration alterations, this may be a biomechanically advantageous spatial orientation). ii. Rotational segmental rotolisthesis (i.e., segmental rotoscoliosis) may accompany segmental spinal degenerative changes in cases of posterior spinal facet joint tropism. Note the segmental rotolisthesis that may occur in cases of pre-existing (i.e., developmental) posterior facet joint tropism. The suprajacent vertebral (dotted outline) rotates with reference to the subjacent vertebra (solid outline). This has the effect of unilateral anterior displacement of the posterior vertebral elements (straight arrow) and ipsilateral stenosis of the lateral recess of the central spinal canal and the inferior recess of the spinal neural foramen (curved arrow), on this side (dashed line: rotationally shifted median sagittal plane of suprajacent vertebra). 1. Coronal plane of vertebral body; 2. Posterior spinal facet joint relative sagittal angulation on the right side in the axial plane; 3. Posterior spinal facet joint on the left side in the axial plane; 4. Posterior spinal facet joint angulation with reference to the coronal plane of the spine; 5. Posterior spinal facet joint angulation on the right side with reference to the coronal plane of the spine; 6. Median sagittal plane of subjacent vertebra.

Anterior Angular Remodeling (Bending) of the Superior Articular Facet Process.

For segmental anterolisthesis to occur, the posterior facet joint articular cartilage, the spinal ligaments, and the relevant bone itself must give way. Following arthrosis of the posterior facet joint with a loss of articular cartilage, anterior angular remodeling, or bending, of the superior articular facet process occurs (Fig. 10 B). [43] [96] [120]

Posterior Angular Remodeling (Bending) of the Inferior Articular Facet Process.
With anterior angular remodeling of the superior articular facet process, there may be a similar posterior angular bending of the inferior articular process (see Fig. 10B).

Facet Arthrosis and Osteophytosis with Narrowing of the Central Spinal Canal and Lateral Recesses of the Central Spinal Canal.

Accompanying the previously mentioned facet changes, facet arthrosis and osteophytosis occur. This may result in central spinal canal and lateral recess stenosis. Because of the anterolisthesis, elongation of the spinal neural foramen initially takes place. With further progression of these alterations, spinal neural foramen stenosis may occur.

Erosion of the Facet Joint Components.

Erosion of the involved facet joint components may occur resulting in further anterolisthesis (Fig. 10 C).

Erosion of the Anterior Surface of the Pars Interarticularis.

Erosion of the anterior surface of the pars interarticularis of the suprajacent vertebra resulting from collision with the superior facet process of the subjacent vertebra may take place allowing yet further anterolisthesis (see Fig. 10 C).

Degenerative Spinal Laterolisthesis.

Underlying predisposing factors, such as scoliosis or perispinal muscle asymmetry may cause a suprajacent vertebra to slip laterally on a subjacent one, resulting in laterolisthesis. This leads to an alteration in stresses and acceleration of asymmetric diskal and posterior spinal facet joint degenerative changes (Fig. 11).
Degenerative laterolisthesis, alterations related to segmental scoliosis and degeneration of related spinal structures (e.g., intraspinal ligaments and muscles, intervertebral disk). A. Degenerative laterolisthesis scoliosis and lateral intervertebral disk herniation (coronal plane). With degeneration of the intervertebral disk (single asterisk) and related spinal structures, degenerative laterolisthesis (dashed arrows) may occur (upper segmental levels shown). This will cause the intertransverse ligaments and intertransversarii muscles (straight solid arrows) to become stretched and taught. At the lower level shown, a segmental scoliosis with the convex curve on the reader's left (curved arrow) is present. The intervening intervertebral disk becomes laterally wedge-shaped (double asterisks), the intertransverse musculoligamentous structures on the convex side of the curve become over-stretched (open arrows), while the same tissues contralaterally on the concave side of the scoliotic curve become redundant (open dashed arrow). In some cases focal direct lateral intervertebral disk extensions (arrowheads) occur that may engender perispinal sterile inflammation and involve the medial surface of the psoas muscle on that side. B. Degenerative laterolisthesis (axial plane). In laterolisthesis the suprajacent vertebral body (dotted curved outline), will be shifted to one side (solid arrow) together with the posterior bony elements (dashed arrows), as compared with the subjacent vertebral body (solid curved outline). This will result in narrowing of the posterior spinal facet joint on the side toward the laterolisthesis (arrowhead) and consonant gapping and joint effusion of the contralateral joint (asterisk). With direct laterolisthesis, the median sagittal plane of the suprajacent vertebral body (dotted straight line) will be shifted laterally with reference to that of the subjacent vertebral body (solid straight line). This laterolisthesis may have a rotational component, especially if posterior spinal facet joint tropism exists before segmental degeneration (see Fig. 10 Gii). C, Vertical vertebral cant (i.e., lateral tilt) in the coronal plane. Especially in cases of scoliosis, or in instances of asymmetric lateral (i.e., lateral wedge-shaped) disk narrowing, there will be, in addition to the laterolisthesis outlined above, a vertical vertebral cant or tilt (curved arrow) in the coronal plane. This will result in a caudal subluxation of the superior articular process (straight dashed arrow) of the posterior spinal facet joint of the subjacent vertebra in relationship to the inferior articular process of the posterior facet joint of the suprajacent vertebra, on the concave side of the scoliotic curve. The posterior spinal facet joint (arrowhead) at the same level on the contralateral convex side of the scoliotic curve may not undergo significant craniocaudal subluxation, but it may sublux laterally, leaving a wider articular gap than normal. Hypertrophic, stress-related spondylosis (shading), and joint space narrowing (arrowhead) will usually accompany these distortional alterations (compare with more normal configuration at the segmental level above). 1. Inferior articular process of suprajacent vertebra; 2. Superior articular process of subjacent vertebra; 3. Lamina; 4. Base of spinous process.

Degenerative Spinal Rotolisthesis.

Because in part of underlying predisposing anatomic factors, such as posterior spinal facet joint tropism (i.e., lateral asymmetry in joint surface angulation in the axial plane) may lead to a rotational slip of a suprajacent vertebra on a subjacent one (see Fig. 10) . This leads to accelerated stresses and asymmetric diskal and posterior spinal facet joint degenerative changes together with ipsilateral stenosis of the lateral recess of the spinal canal and ipsilateral spinal neural foramen.

Degenerative Segmental Widening of the Anteroposterior Diameter of the Central Spinal Canal

Paradoxically, degenerative segmental widening of the anteroposterior dimension of the central spinal canal may occur in unusual cases (Fig. 12 B). The mechanism behind this widening is not certain but must be centered around one or both of the following phenomena.
Figure 12. Segmental degenerative elongation of the anteroposterior dimension of the central spinal canal. A. True or effective pedicle elongation. Prolonged anteroposterior stresses may induce a true stretch remodeling of the involved pedicle(s) (double-headed arrow). Alternatively or in combination, superior and inferior angular remodeling (open arrows) and degenerative erosive changes (asterisks) of the segmental facet processes and pars interarticularis may result in an effective elongation of the pedicle length. This will result in anterior displacement of the involved suprajacent vertebral body (dashed arrow) and relative minor posterior displacement of the inferior articular facet process(es), lamina(e), and spinous process of the same vertebra. B, Segmental enlargement of anteroposterior dimension of central spinal canal. With true or effective elongation of the pedicles at one level, there may be minor segmental enlargement of the anteroposterior dimension of the central spinal canal (double-headed arrow).

Stretch Longitudinal Remodeling of the Segmental Pedicle Resulting in a True Elongation of the Pedicle.

Long-term anteroposterior vectorial (i.e., shear) stresses on the vertebral pedicles might conceivably result in a stretch longitudinal remodeling of the pedicles themselves. This constitutes a true physical elongation of the pedicle, and an accompanying increase in the segmental anteroposterior dimension of the central spinal canal (Fig. 12 A).

Erosive Longitudinal Remodeling of the Segmental Pedicle Resulting in an Effective Elongation of the Pedicle.
Long-term stress and erosive changes of the junction of the pedicle and pars interarticularis and the facet joint processes may result in erosive remodeling. This accounts for an effective elongation of the pedicle on one or both sides (see Fig. 12A), and a consonant increase in the segmental anteroposterior dimension of the central spinal canal.

Segmental Hypermobile Instability with Paraspinous Muscle Degeneration

Segmental Hypermobile Segmental Instability.

Because of a loss of segmental support following degenerative changes of the spinal ligaments and related spinal structures (e.g., posterior spinal facet joints, anterior and posterior spinal ligaments, and intervertebral disk), hypermobile segmental instability takes place in flexion-extension and rotation (Fig. 13B). This allows the spine to follow a range of motion that is greater than normal (Fig. 13B) [37] [63] [65] [116].
Figure 13. Paraspinal intrinsic spinal muscle degeneration secondary to hypermobile spinal instability. A,
Multifidus and interspinalis muscle origins and insertions and innervation(s) from posterolateral aspect on the left side. The interspinalis muscle typically originates in the cranial aspect of a subjacent spinous process (or sacral equivalent), and inserts into the caudal aspect of the immediately cranial suprajacent spinous process. The multifidus muscle originates from the mammillary process of a superior articular process and joint capsule of a subjacent lumbar vertebra (or the sacral equivalent), and inserts into one or more spinous processes of cranial vertebra. Note the multisegmental nature of the innervation of the medial-posterior spinal and perispinal tissues from the medial branch of the medial branch of the dorsal rami of the spinal nerve.

B, Segmental hypermobile instability associated with degenerative osseous and ligamentous spinal changes. The spine may be hypermobile in marked cases of segmental degenerative spinal alteration causing the spinous processes to traverse through a range of motion (dashed arrows) that is greater than its capacity would otherwise normally allow. The interspinous space (star) may thereby expand to a larger than normal degree.

C, Autotraumatic denervation of paraspinal muscles secondary to hypermobile instability. Because the medial branch of the dorsal ramus of the spinal nerve is fixed, hypermobile instability and associated intrinsic spinal ligament degeneration (double-headed arrows), may result in rupture/avulsion of this nerve (open arrows: or nerves if multisegmental spinal hypermobility exists) and lead to paraspinal muscle deinnervative degeneration.

D, Autotraumatic rupture of the specific paraspinal intrinsic spinal muscles. Alternatively, in cases of degenerative segments or multisegmental spinal hypermobility, the abnormal range of spinal motion (asterisks: ruptured interspinous ligaments) may lead to a rupture or avulsion of specific paraspinal intrinsic spinal muscles that originate and terminate in the spine (double-headed arrows: multifidus, interspinalis muscles).

Acute-Subacute Intrinsic Spinal Muscle Degeneration.

Because of this segmental hypermobility, the muscles that originate and insert into the spine (e.g., multifidus and interspinalis muscles) may undergo acute-subacute degeneration. Hypothetically this degeneration is caused by either one or both of two mechanisms related to neuromuscular autotrauma: (1) Rupture or avulsion of the insertion of intrinsic spinal muscles (e.g., rupture-avulsion of the multifidus and interspinalis muscles) (Fig. 13 D); or (2) traumatic denervation of the interspinous muscles (e.g., rupture-avulsion of the medial branch of the dorsal ramus of the spinal nerve) (Fig. 13 C).[45] [102]

Stress-Related Marrow Edema, Fatty Marrow Infiltration, and Bony Sclerosis of the Bony Posterior Spinal Elements

Increased stresses placed on the posterior elements engendered by intervertebral disk collapse and related instability results in alterations of marrow edema (type 1), fatty marrow infiltration (type 2), or bony sclerosis (type 3) of the superior and inferior articular facet processes, the pars interarticularis, the pedicles, and the spinous processes of the involved vertebrae (see Figs. 10 B to 10 D). [22] [33] [69] [92] [129]

Combined Effects of Adjacent (Tandem) Intervertebral Disk Narrowing at and Suprajacent to the Lumbosacral Junction

Erosion of the Anteroinferior Surface of the Pars Interarticularis of L5.
As noted in the foregoing, collision of the apex of the superior articular facet process of S1 erodes the L5 pars interarticularis from below (Fig. 6 F).

Erosion of the Posterosuperior Surface of the Pars Interarticularis of L5.

Concomitantly with this, the apex of the inferior articular process of L4 may erode the pars interarticularis from above in cases of collapse of the L4-5 intervertebral disk (see Fig. 6 F).

Erosional Insufficiency Fracture of the L5 Pars Interarticularis.

With simultaneous eroding influences from above and below, continuing stress may eventually result in an insufficiency fracture of the L5 pars interarticularis (Fig. 6 G). When bilateral, these insufficiency fractures may allow relatively unrestricted L5-S1 anterolisthesis or fracture related-acquired degenerative spondylolyses. With a distraction of the fracture fragments, enlargement of the anteroposterior dimension of the central spinal canal may occur.

Clinical Implications of These Alterations

Stenosis of the Central Spinal Canal, the Lateral Recesses, and the Spinal Neural Foramina Resulting in Neural Compression and Radiculopathy.

The sum total of these alterations results in spinal stenosis in its various forms: the central spinal canal, the lateral recess of the central spinal canal, and the neural foramena. At and suprajacent to the lumbosacral junction this may in turn cause compressive radiculopathy either in one (monoradiculopathy) or more (polyradiculopathy) of the spinal nerve roots.\[^{18}\] [\(^{23}\)] [\(^{126}\)]

Bony Collision of the Spinal Bony Elements Resulting in Low Back Pain.

At the same time as frank neural compression takes place, a bony collision of the various spinal elements may cause somatically and autonomically mediated low back pain and referred (i.e., pseudoradicular) low back, pelvic, and lower extremity pain and paresthesias.\[^{18}\] [\(^{23}\)] [\(^{126}\)]

Musculoligamentous Injury Resulting in Low Back Pain.

Rupture avulsions of the musculoligamentous structures in and surrounding the spine may, at some point, cause low back pain.

Medical Imaging Recommendations

Acquire Thin-Section, Stacked Axial CT Images for High-Resolution Sagittal Reconstructions.
By stacking thin-section axial CT images, high-resolution sagittal reconstructions acquired from side-to-side yield relevant information concerning the consequences of acquired collapse of the intervertebral disks at and suprajacent to the lumbosacral junction.

Acquire High-Resolution Far-Lateral MR Images Through the Spinal Neural Foramina.

By acquiring high-resolution far-lateral MR imaging acquisitions through the neural foramina, the images yield relevant information concerning the alterations in the posterior spinal facet joints, pedicles, intervertebral disks and their margins, and neural foramina themselves resulting from or accompanying collapse of the intervertebral disks at and suprajacent to the lumbosacral junction. These MR imaging changes complement the information gained from the far-lateral CT reconstructions.

Analyze the Midline Sagittal Magnetic Resonance Images and Computed Tomography Reconstructions Through the Intervertebral Disks, the Adjacent Vertebrae, the Spinous Processes, and the Interspinous Spaces.

By carefully evaluating the midline sagittal MR images and the sagittal CT reconstructions, the pathologic alterations of the intervertebral disks, the spinal alignment, the retrothecal fat pads, and the interspinous spaces become evident.

Acquire T2-Weighted Fast Spin Echo, Fat-Suppressed Images in the Sagittal, Axial, and Coronal Planes.

These T2-weighted, fat-suppressed images allow the visualization of the interspinous ligament degeneration, the neocysts and synovial cysts forming off of the posterior spinal facet (zygapophyseal) joints, and the neocysts emanating from the interspinous neoarthrosis. Also noted is the related perispinous muscle degeneration that sometimes accompanies interspinous ligament degeneration or rupture, and the degenerative marrow alterations.[16] [91] [134]

SUMMARY

In earlier evolutionary times, mammals were primarily quadrupeds. However, other bipeds have also been represented during the course of the Earth's several billion year history. In many cases, either the bipedal stance yielded a large tail and hypoplastic upper extremities (e.g., Tyrannosaurus rex and the kangaroo), or it culminated in hypoplasia of the tail and further development and specialization of the upper extremities (e.g., nonhuman primates and human beings). In the human species this relatively recently acquired posture resulted in a more or less pronounced lumbosacral kyphosis. In turn, certain compensatory anatomic features have since occurred. These include the normal characteristic posteriorly directed wedge-shape of the L5 vertebral body and the L5-S1
intervertebral disk; the L4 vertebral body and the L4-L5 disk may be similarly visibly affected.

These compensatory mechanisms, however, have proved to be functionally inadequate over the long term of the human life span. Upright posture also leads to increased weight bearing in humans that progressively causes excess stresses at and suprajacent to the lumbosacral junction. These combined factors result in accelerated aging and degenerative changes and a predisposition to frank biomechanical failure of the subcomponents of the spinal column in these spinal segments.

One other specific problem that occurs at the lumbosacral junction that predisposes toward premature degeneration is the singular relationship that exists between a normally mobile segment of spine (i.e., the lumbar spine) and a normally immobile one (i.e., the sacrum). It is well known that mobile spinal segments adjacent to congenitally or acquired fused segments have a predilection toward accelerated degenerative changes. The only segment of the spine in which this is invariably normally true is at the lumbosacral junction (i.e., the unfused lumbar spine adjoining the fused sacrum).

Nevertheless, biomechanical failures of the human spine are not lethal traits; in most cases today, mankind reaches sexual maturity before spinal biomechanical failure precludes sexual reproduction. For this gene-preserving reason, degenerative spinal disorders will likely be a part of modern societies for the foreseeable eternity of the race.

The detailed alterations accruing from the interrelated consequences of and phenomena contributing to acquired degenerative changes of the lumbosacral intervertebral segments as detailed in this discussion highlight the extraordinary problems that are associated with degenerative disease in this region of the spine. Further clinicoradiologic research in this area will progressively determine the clinical applications and clinical efficacy of the various traditional and newer methods of therapy in patients presenting with symptomatic acquired collapse of the intervertebral disks at and suprajacent to the lumbosacral junction and the interrelated degenerative alterations of the nondiskal structures of the spine. [68] [71]

ACKNOWLEDGMENT

The author thanks J. Murray for manuscript preparation and D. Baker for the artwork.

References

3. Adams MA, Hutton WC, Stoff JRR: The resistance to flexion of lumbar intervertebral joint. Spine 5:245-
10. Baastrup CI: On the spinous processes of the lumbar vertebrae and the soft tissue between them and on pathological changes in that region. Acta Radiol 14:52-54, 1933

Citation

70. Jonsson B: The functions of individual muscles in the lumbar part of the spinal muscle. Electromyography 1:5-21, 1970 Citation

82. Louis R: Spinal stability as defined by the three-column spine concept. Anat Clin 7:33-42, 1985 Abstract

 Abstract

103. Pfaff R: Treatment of acute lumbosacral strain. J Fla Med Assoc 54:968-971, 1967 Citation

110. Rauschning W: Pathoanatomy of lumbar disc degeneration and stenosis. Acta Orthop Scand Suppl 251:3-12, 1993 Citation

111. Resnick D: Degenerative diseases of the vertebral column. Radiology 156:3-14, 1985 Abstract

113. Rissanen PM: Comparison of pathologic changes in intervertebral discs and interspinous ligaments of the lower part of the lumbar spine in the light of autopsy findings. Acta Orthop Scand 1:54-65, 1964

Abstract

Abstract

Abstract

Abstract

Citation

Abstract

Abstract

Abstract

Abstract

Abstract

Abstract

Abstract

Abstract

Abstract

Abstract

135. Vernon-Roberts B, Pirie CJ: Degenerative changes in the intervertebral discs of the lumbar spine and
Abstract

*References:

[24] [27] [44] [53] [66] [75] [79] [85] [127] [138]

Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com